Gene trees and phylogeography

Scott V. Edwards
Department of Organismic
and Evolutionary Biology
Harvard University

Gene trees and phylogeography

- What is phylogeography?
- How can we measure genetic variation within a species?
- What can gene trees tell us about population history?
- How can we infer natural selection from population genetic data?

A MOLECULAR APPROACH TO THE STUDY OF GENIC HETEROZYGOSITY IN NATURAL POPULATIONS. I. THE NUMBER OF ALLELES AT DIFFERENT

J. L. HUBBY AND R. C. LEWONTIN

LOCI IN DROSOPHILA PSEUDOOBSCURA¹

Department of Zoology, University of Chicago, Chicago, Illinois

Received March 30, 1966

Restriction enzyme analysis

Avise, J. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall.

The old population genetics

Old view

Allele frequency change looking forward in time; alleles either the same or different

The new population genetics

Shape of gene tree looking backward in time; alleles are related phylogenetically

The first 'gene tree', 1979

J. C. AVISE, R. A. LANSMAN AND R. O. SHADE

Avise et al. (1979) Genetics

Effective population size

- Abbreviated as N or N_e
- The size of an ideal population with the same genetic dynamics as the population under study
- <u>Dynamics</u> = Genetic diversity, rate of loss of diversity, change in allele frequency over time
- <u>Ideal</u> = single population; all genetic variation neutral; no population structure or migration; no selection; random mating

Effective population size based on sex ratio

$$N_e = \frac{4N_M N_F}{N_M + N_F}$$

"Loss of heterozygosity" effective population size

$$H = (0.5)(1 - 1/2N)^t$$

Heterozygosity (=variability) = proportion of individuals heterozygous at a locus

Variance effective pop. size

$$N_e = \frac{4N - 2}{V_k + 2}$$

Long-term effective population size as harmonic mean of temporal census sizes

n = 4 population bottleneckspopulations

$$N_e = \frac{n}{1/N_1 + 1/N_2 + \dots + 1/1/N_n}$$

Estimating genetic diversity (4Nμ) within populations

"Watterson's theta"

$$\theta = \frac{S_n}{\sum_{i=1}^{n-1} 1}$$
 Allele 1: ACTGGCTGAACTT
$$\sum_{i=1}^{n-1} \frac{1}{i}$$
 Allele 2: ACTGGTTGAACTT
$$S=3$$
 * * * *

 $\theta = 4N\mu = a$ function of the number of polymorphic sites in a population (S)

n = number of alleles

A second estimate of 4Nµ

$$\pi = \frac{\sum_{i=1}^{n} \sum_{j>1}^{n} k_{ij}}{\binom{n}{2}}$$
 Allele 1: ACTGGCTGAACTT Allele 2: ACTGGTTGAACTT Allele 3: GCTGGTTGAACCT

Allele 1: ACTGGCTGAACTT

$$\pi = \frac{k_{12} + k_{23} + k_{13}}{\binom{3}{2}} = \frac{k_{12} + k_{23} + k_{13}}{3}$$

k = number of differences between pairs of alleles i and j

n = number of alleles

Nucleotide diversity in mammals

Nabholz et al. Genetics 178: 351-361

Determinants of nucleotide diversity in birds

Nabholz et al. 2009 BMC Evolutionary Biology 2009, 9:54

Two rules of gene trees near the species boundary

- 1. Gene trees don't always match the species tree
- 2. Gene divergence often precedes population divergence

Incomplete lineage sorting

Hudson 1990. Oxf. Surv. Evol. Biol. 7: 1-44.

Counting the number of interpopulation coalescent events

Slatkin and Maddison. 1989. Genetics 123: 603-613

s as an index of divergence time

Slatkin and Maddison. 1989. Genetics 123: 603-613

Gene trees and species trees in primates

Gene tree compatible to species tree

Satta et al. 2000. Molecular Phylogenetic s and Evolution 14: 259–275.

Gene trees and species trees in primates

Gene tree incompatible to species tree

Satta et al. 2000. Molecular Phylogenetics and Evolution 14: 259–275.

Counting the number of interpopulation coalescent events

Slatkin and Maddison. 1989. Genetics 123: 603-613

s as an index of gene flow

Gene flow erodes population monophyly

Gene flow erodes population monophyly

- ▲ Melville Island
- Cobourg Peninsula
- Darwin

Genetic differentiation between populations

$$F_{st} = \frac{\theta_b - \theta_w}{\theta_b}$$

or

$$F_{st} = \frac{\pi_b - \pi_w}{\pi_b}$$

b, between populations; w, within populations

Genetic differentiation between populations

Total genetic variation in a species

Genetic variation within single populations

Most genetic variation found between populations: F_{st} high

Genetic differentiation between populations

Little genetic variation found <u>between</u> populations: *F*_{st} **low**

Identifying outlier loci using $F_{\rm st}$

Identifying loci under pollution-driven selection using Fst and outlier loci

Identifying loci under pollution-driven selection using $F_{\rm st}$ and outlier loci

Whitehead et al. 2010. Molecular Ecology 19:5186-5203

Distribution of F_{st} among 8525 loci in humans

Shriver et al. (2004) *Human Genomics* 1: 274–286.

Gene tree monophyly as an indicator of natural selection

European corn borer

Dopman et al. 2005. PNAS 102: 14706-14711

Faster approach to concordance for mtDNA versus nuclear DNA

Examples of discordance between gene and species trees

Avise, J. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall.

Examples of large mtDNA breaks within species

Avise, J. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall.

Structured populations of hyperthermophilic Archaea

Isolation by distance

Genetic diversity and climate stability

Hugall, A., C. et al. *PNAS* 99:6112-6117.