

Our heros

Chinlin Guo

Matthieu Piel

People are complicated, yeast are simple

Peeps vs. Yeasties

(Homo sapiens) (Saccharomyces cerevisiae)

Doubling time = 20 yrs Doubling time = 90 min

50 trillion cells 1 cell

DNA = 6 billion bases DNA = 12 million bases

Anything goes

genetic manipulation
Limits on experiments

forced mating

EXTREME survivor

Sex! Sex!

The life cycle of budding yeast

A molecular view of sexual signaling

Protein kinase (modifies activities of other proteins)

Scaffold protein

A night at the yeast singles bar

Shmooing is independent of gradients

Chemotropism

Symmetry breaking

Pheromone concentration

How to study polarization: polarity markers

Model 1: Pre-existing marks

Model 2: lateral inhibition

active zones repel each other

Model 3: Global Integration

- Cytoskeletal polymer (actin)
- Active signaling stimulates actin polymerization
- Inactive signaling molecules in/on vesicles

Transport is **distributive**: bind, move, fall off, bind, move,...

Pro: robust polarization along a single axis

Con: drive to polarize → fragile gradient detection

The three models compared

Cells don't shmoo from presumptive bud sites

Patches merge in weakly stimulated (2 nM α F) cells

Only a single patch in strongly (10 nM α F) stimulated cells

Spa2-YFP

How robust is gradient detection?

Microfluidics yields controlled pheromone gradients

Global integration implies a polarization threshold

Cellular response depends on $[\alpha F]$: summary

Cellular response depends on pheromone levels

 $\begin{array}{c} \text{High} \\ [\alpha \text{F}] \end{array}$

Cells only detect a narrow range gradients

How do cells mate robustly?

Local concentration should depend on cell number

One cell's pheromone contribution depends on 1/rNumber of contributing cells in a ring depends on rEach ring contributes the same amount of α factor

Gene induction as a surrogate for [α factor]

A scheme to control α factor concentration

The BAR1 promoter is regulated

Bar1 controls α factor concentration at the cell surface

BAR1 cells detect gradients robustly

Thanks

Chinlin Guo Matthieu Piel Joana Sa

Noa Rapaport Naama Barkai Justin Jiang George Whitesides