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HISTORY

The Controversy of Adult
Neurogenesis

“...None of the methods
used by these
investigators are capable
of distinguishing
absolutely a multiplying
neuroglia cell from a small
mitotic neuron”

(Ramon y Cajal, 1913)



HISTORY

The Controversy of Adult
Neurogenesis

1962 Joseph Altman: thymidine
autoradiographic evidence for
new neurons in the adult rat and

cat

1977 Michael Kaplan:
combined [°H]-thymidine labeling
and electron microscopy to
confirm Altman’ s claims by
showing mitotic neuronal
precursors lining the lateral
ventricles



HISTORY

The Controversy of Adult
Neurogenesis

1980s Nottebohm Colleagues :
AVIAN BRAIN

1. production of new cells
with thymidine labeling

2. new cells were neurons
receiving synapses

3. neurons responded to
sound with action
potentials.




HISTORY

The Controversy of Adult
Neurogenesis

Hippocampal Dentate Gyrus

Subventricular Zone (SVZ)

— 1997 Organization and
Cytoarchitecture of Rodent SVZ

— 1999 Adult Neural Stem Cells in
Rodents are Astrocytes
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Adult Human Neural Stem
Cells?

1994 Goldman et al: adult
human neurogenesis from
temporal horn SVZ in vitro

( Kirschenbaum et al. 1994, Cereb Con‘ex)

1998 Gage et al: in vivo
neurogenesis in adult human
hippocampus

a _ Hippocampus
O L R




=

‘Eriksson et al, Nature Medicine, 1998 4(11)




The Adult Human SVZ
Contains
Neural Stem Cells

« SVZ Specimens: 62.57 *
7.46 neurospheres / well

* Purified SVZ
Astrocytes: 109.29 * 8.67
neurospheres / well

* Cortex & Striatum: no
neurospheres

Sanai et el, Nature, 2004



The Adult Human SVZ Contains
Neural Stem Cells

neurons

Sanai et el, Nature, 2004

astrocytes

oligos



Human SVZ Astrocytes Do Not
Require EGF or FGF to

Produce

Cortical and striatal astrocytes:




19 February 2004 International weekly journal of science

.nature.com/nature
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Intraaxial tumors:

* LGG: JPA, Astrocytoma, oligodendroglioma

* HGG: Grade III Astrocytoma, Anaplastic
Oligodendroglioma, GBM

PRE OPERATIVE

- 2cm 2-4cm :
4cm brain adjacent from tumor Distant
tumor to tumor b@in
o i 3 : 7
Ratio of tumor cells 11 1:10 1:100 '1:1000
to total cells
Pe of tumor 92% 6% 1.8% 0.2%
cell population

At diagnosis 108— 109 cells



Malignant Glioma Epidemiology

* Approximately 20,500
people in the US are
diagnosed with cancer of
the brain and nervous
system annually

—About 12,740 patients
die annually as a result
of these malignant
tumors

American Cancer Society. Cancer Facts and Figures 2007.
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CLINICAL-PATIENT STUDIES

Relationship of glioblastoma multiforme to the lateral ventricles
predicts survival following tumor resection

Kaisorn L. Chaichana - Matthew J. McGirt - James Frazer - Frank Attenello -

Hugo Guerrero-Cazares - Alfredo Quinones-Hinojosa
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rain Tumor Stem Cells
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Galli et al.
Cancer Res, 2004

Singh et al.
Nature, 2004



Neural stem cells (NSCs) (Bé_élnl_lgé:mor stem cells

Migratory capabilities

Continuous self-renewal

Multi-potentiality

Affinity for basement membranes

Long term propagation

Cell markers: nestin, CD133,
Sox2

MIISRERN MR ys: Notch, PTEN,
Shh-Gli, Wnt-B-catenin

Dual phenotypic labeling

Regulatory pathways:
EGF and PDGF

signaling

Quinones and Chaichana, Exp Neurol 2007



Brain Tumor Stem Cells: Characteristics

EreNpyMAL
L 71
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* Nucleus
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Quinones-Hinojosa A, et al., 2006
Quinones and Chaichana, Exp Neurol 2007
Sanai N, Nature 427: 740-744, 2004.



Brain Tumor Stem Cells: Characteristics

¢ Stem Cells
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Quinones and Chaichana, Exp Neurol 2007
Sanai N, Nature 427: 740-744, 2004.



CANCER STEM CELLS

DNER, an Epigenetically Modulated Gene, Regulates
Glioblastoma-Derived Neurosphere Cell Differentiation
and Tumor Propagation
PEnG SUN,* SauLt Xia,* Bacucnu LaL,* CHARLES G. EBERHART,” ALFREDO QUINONES-HINOJOSA,
JAREK Maciaczyk,® WiLLiam Matsur,? Francesco DIMEco,” Sara M. PrcciriLLO,®
ANGELO L. VEScovL® JoHN LATERRA™

A 10627

DNER, Delta/Notch-like
epidermal growth factor-
related receptor

Con DNER derived from GBM
10627 neurospheres.
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Tumor Volume (mm3)

STem CELLs Express April 9, 2009.




CANCER STEM CELLS

Kriippel-Like Family of Transcription Factor 9, a Differentiation-
Associated Transcription Factor, Suppresses Notchl Signaling and
Inhibits Glioblastoma-Initiating Stem Cells
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c-Met signaling induces a reprogramming network and
supports the glioblastoma stem-like phenotype

Yunqing Li*®, Angela Li®, Martin Glas““, Bachchu Lal*®, Mingyao Ying®®, Yingying Sang?® Shuli Xia*®,
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Conclusions
There is Adult
Neurogenesis In the
mammalian brain

The stem cell niche,
specifically the SVZ, is
different between the
Human and the Rodent

Stem Cells in the
Human Brain do exist

Stem Cells in Human
Cancer



 \Whether neral stem cells
give riste to tumors is not
known

 \What is known is of a
population of cells within
tumors that behave like
stem cells

* The future is bright and
we will continue with the
quest to find the etiology
of brain tumors
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ORIGINAL ARTICLE

Regulation of glioblastoma stem cells by retinoic acid: role for Notch
pathway inhibition

M Ying"*¢, S Wang"®, Y Sang', P Sun'?, B Lal'?, CR Goodwin', H Guerrero-Cazares**,
A Quinones-Hinojosa**, J Laterra’**7 and S Xia'-?
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GFP-labeled GBM cell migration on a nanopatterned a surface
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GFP-labeled GBM cell migration on a nanopatterned a surface
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Malignant Gliomas Arise

From Brain Tumor Stem Cells

e Share characteristics with
normal Neural Stem Cells (NSCs):
eSelf-renewal
e Proliferation
eDifferentiation

e Brain Tumor Stem Cells (BTSCs):
- Initiate tumor formation,
maintain tumor growth
- Migrate long distances in brain
parenchyma resulting in local
tumor recurrence
- Are highly radio/
chemoresistant



Malignant Gliomas Arise
From Brain Tumor Stem Cells

Astrocyte

Tumor Formation
Oligodendrocyte
Neuron \ /

|
0 ©

Progenitor Cell Cancer Progenitor Cell

| N '
"
‘/,.
Mutation .r’;':

Neural Stem Cell Brain Tumor Stem Cell

Zaidi HA, Kosztowski TA, DeMico F, Quinones-Hinojosa A Journal of Neuro-Oncology, 2009



Current Therapies Fail To Destroy Brain
Tumor Stem Cells

Current

therapies for
brain tumors fail
to target BTSC

. © Brain Tumor Stem Cells (BTSC)
population

. @ Brain Tumor Progenitor Cells
Progression and

local recurrence
of tumor due to

% Differentiated Brain Tumor Cells

presence of Cellular Composition of Brain Tumors
BTSC :
: S ~___ Immunotherapy using
Novel therapies Resection + Growth Receptor Induce Differentiation Inhibit Migration Mesenchymal Stem
which Radiation + Chemotherapy Inhibitors (PDGF, EGF) of BTSCs (BMPs) of BTSCs Cells
specifically
target BTSCs will
have best Tumor Size Shrinks Inhibit BTSC Deplete BTSCs  Prevent Metastasis Immune Reaction
chance at (BTSCs remain) Growth, Proliferation of BTSCs Destroying BTSCs
preventing (D R0 X ) ;@b ,
tumor N e ¢ ~@$; o= v& P
¢ 9 ) b
recurrence
Adapted from:

Zaidi HA, DeMico F, Quinones-Hinojosa A. “Brain Tumor Stem Cells,” Youman s Textbook of Neurological Surgery, 2009
Zaidi HA, Kosztowski TA, Quinones-Hinojosa A. “Brain Tumor Stem Cells Evade Traditional Therapies and Necessitate the Development of Novel Treatment
Modalities,” Neurosurgery, 2009.



Progenitor Migration in the Human
Brain?: The Human Olfactory Tract

P 3 B o

TuJ1

Sanai et al, Nature 2004



Trigone

GFAP/

Figure 5. Doublecortin (DCx)-positive structures in the anterior SVZ. A: Reconstruction of the entire connection between the anterior homn
and the olfactory tract. DCx+ cells were found at every region with different organization. At the DAH (B), RAH (C), and olfactory trigone
(D) DCx+ cells were found aligned to GFAP-positive cells. At the OT, no GFAP+ cells were observed in alignment with the less abundant
DCx+ cells. Scale bars = 10 pum.




Rodent Brain SVZ
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Cell-based Therapy for
Malignant Gliomas
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Sources of Neural Stem Cells for

treatment
e Adult CNS

e Embryonic CNS

e Induced Pluripotent Stem Cells

e Transduction of “stem cell factors’:
» Sox2, Musashi-1, OCT4, Nanog
» Hair follicles

Garzon-Muvdi, T., Quinones-Hinojosa, A. ILAR J. 2009



Ex Vivo Human




Adult or Embryonic Subventricular Zone

0

Modification of NSCs
for CNS disease

' FACS Sort with:

treatment =

Side Population v
Aldehyde Dehydrogenase Oligodendrocyte
PDGF

Differentiation into Specific

| —'—" Cell Type ‘ Neuron
Pitx
Transcriptio F\t‘ \4

. Astrocyte
Enhancement of Homing / N\
Capacity:EGFR, CXCR4

* |dentification and sorting @Q/

e Culture

/

e Genetic modifications = R S
1 ? \ Characterization of Cell Lines
e Characterization T

Genetic Profiling Tumorigenicity

,\ﬁ\/
)
(&
‘S'
Injection of Cell Lines into
Y se Brain

e Trials in animal models \ /
(preclinical) @/

Injection into animal model of
Neurologic Disease:
Intracerebral or Intravenous

Garzon-Muvdi, T., Quinones-Hinojosa, A. ILAR J. 2009



Neural Stem Cells for
Regenerative Therapy

e Endogenous or exogenous NSCs

e Migration can be directed with humoral factors:
e Hepatocyte growth factor
e Vascular endothelial growth factor
e Stromal derived growth factor

e Tropism to:
e Multiple Sclerosis lesions
e |schemic stroke

e Glioma — NSCs share this characteristic with Mesenchymal Stem
Cells

Garzon-Muvdi, T., Quinones-Hinojosa, A. ILAR J. 2009



NSCs for the treatment of CNS diseases
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Mesenchymal Stem Cells As Delivery
Vehicles for Glioma Therapy

MSCs have natural affinity to
migrate towards gliomas, BTSCs

Bone Marrow Derived MSCs have
been shown to be used as
delivery vehicles for various anti-
tumoral agents (i.e. HSV-
Thymidine kinase, IL-2, IL-18,
IL-23, TRAIL)

Several Difficulties of Bone
Marrow-MSC which their limit
clinical use:

1. Invasive Surgery
2. Short Life Span ex vivo
3. Small Extraction Yield

Adipose tissue represent a new
source of Mesenchymal Stem
Cells ideal for large scale clinical
use:

1. Safely accessible, small
incision

2. 100% harvest efficiency

3. Long lifespan

Adapted from:
Kosztowski TA, Zaidi HA, Quinones-Hinojosa A. “Application of Neural and Mesenchymal Stem Cells in the Treatment of Gliomas,” Exp Rev AntiCa Ther 9(5) 2009.
Zaidi HA, Momin E, Quinones-Hinojosa A. “Mesenchymal stem cells for neural transplantation—Applications for Inmunotherapy,” Current Immunology Reviews,

2009
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Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as
Positive T, Contrast Agents for Labeling and MRI Tracking of Adipose-
Derived Mesenchymal Stem Cells
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Electroporation

ABSTRACT: Mesoporous silica-coated hollow manganese oxide coated
(HMnO@mSiO,) nanoparticles were developed as a novel T, magnetic
resonance imaging (MRI) contrast agent. We hypothesized that the meso- Y.
porous structure of the nanoparticle shell enables optimal access of water |%o
molecules to the magnetic core, and consequently, an effective longitudinal B
(R,) relaxation enhancement of water protons, which value was measured to )
be 099 (mM™'s™') at 11.7 T. Adipose-derived mesenchymal stem cells HMNO@mSIO, /
(MSCs) were efficiently labeled using electroporation, with much shorter T} ;'.::r:.wm.l Day 14
values as compared to direct incaubation without electroporation, which was

also evidenced by signal enhancement on Ty-weighted MR images in vitro. Intracanial grafting of HMnO@mSiO,-labeled MSCs
enabled seral MR monitoring of cell transplants over 14 days. These novel nanoparticles may extend the arsenal of currently available
nanoparticle MR contrast agents by providing positive contrast on T -weighted images at high magnetic field strengths.




Journal of the American Chemical Society m

J

Day 1 Day 6 Day 14

Figure 4. In vivo MRI of transplanted MSCs. (a) No hyperintense signal (red arrow) was detected in mouse transplanted with unlabeled MSCs. (b)
Hyperintense signals (green arows) were detected in mouse transplanted with HMnO@mSiO;-labeled MSCs and were still visible 14 days after
injection.




Conclusions

e BTSCs may originate GBM
e NSCs and A-MSCs as delivery vehicles

e NSCs can be modified for treatment of other CNS diseases
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Project Aims

e Am1
— Establish cell line from fat tissue which exhibits MSC-like
properties
e Aim 2 (in vitro)
— Examine whether Adipose Derived MSCs (A-MSCs) migrate
selectively towards gliomas in vitro
— Examine whether A-MSCs contribute to tumor growth in
vitro
e Aim 3 (in vivo)
— Examine whether A-MSCs exhibit migration towards
intracranial gliomas in vivo

— Examine whether A-MSCs can carry a therapeutic gene
(Interleukin-12) to intracranial gliomas and confer a
survival advantage
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Adipose Derived Mesenchymal Stem Cells harvested
from Rosa26-eGFP-DTA mice express GFP

(Left) BF view of AMSCs harvested from fat of Rosa26-eGFP-DTA mice with
(right) identical view of cells under fluorescence.

N
|
Co — by ( —
Enzyme
\/\f_> Digestion = Mesenchymal
Fat Stem Cells

Fat was extracted from transgenic animals which constitutively express GFP in all cells
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AMSCs display selective tropism for GL26 glioma in vitro
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Boyden Chamber Assay

Insert: FBR or AD-MSC

Porous Membrane

sottorn: Cerebellar Astrocytes or GL26

AMSCs or A-MSCs were plated in insert and
allowed to migrate towards either blank
media, Cerebellar Astrocytes, or GL26 for
48hrs

Compared to Fibroblasts, A-MSCs
preferentially migrate towards GL26 tumor
cells as opposed to blank media or Cerebellar
Astrocyte control. *p-value <0.001



Matrigel Assay

Cerebellar Astrocytes
or

GL26

Protenacious
Material
Mimics
Extracellular
Enviornment

Allows one
to observe
the
migration of
cells
overtime



AMSCs selectively accumulate at sites of malignant cells

20 hrs 34 hrs 130 hrs

A-MSCs were injected in matrigel and followed for 7d. A-MSCs migrate
centrifugally from the spot in which they were placed.



AMSCs selectively accumulate at sites of malignant cells

20 hr 34 hr 130 hr

When placed in matrigel with Cerebellar Astrocytes (unlabeled, right),
A-MSCs (GFP Labeled, left) do not exhibit extensive migration
towards normal brain cells.



AMSCs selectively accumulate at sites of malignant cells

20 hrs 100 hrs 130 hrs

When placed with GL26 Murine Glioma (unlabeled, right), A-MSCs (GFP
labeled, left) migrate in large numbers towards tumor cells and
accumulate at tumor



AMSCs selectively accumulate at sites of malignant cells

Closer view of GL26 in previous image shows GFP |abeled A-
MSCs infiltrating GL26 spot in matrigel
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Effect of Conditioned Media on the Growth of GL26
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GL26 cells were exposed to conditioned media from A-MSCs for 7days did not exhibit enhanced proliferation rate.




Effect of Direct Cell Contact of A-MSC on Growth of GL26
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Intratumoral Injection of AMSCs
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lpsilateral Injection of AMSCs
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Contralateral Injection of AMSCs
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A-MSCs Effectively Incorporate
Interleukin-12 Transgene

IL-12 Production by AMSCs
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A-MSCs Effectively Carry Interleukin-12 (IL-12) to
Intracranial Glioma and Confer a Survival Advantage

Survival of Mice Bearing Intracranial GL26 Murine Glioma
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Conclusions

A-MSCs can be easily collected from fat
tissue

A-MSCs migrate in large quantities to
gliomas in vitro and in vivo

A-MSCs do not enhance the growth of
gliomas in vitro or decrease survivability of
mice in vivo

When genetically modified to produce a
theraputic agent (i.e. IL-12), A-MSCs confer a
survival advantage to mice bearing
intracranial gliomas



Future Directions: Are MSCs dangerous?

Malignant transformation from
interactions with tumor stroma
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Malignant Glioma Epidemiology

Distribution of Primary Brain and CNS Gliomas*

* Approximately 20,500 people in the
US are diagnosed with cancer of the
brain and nervous system annually

— About 12,740 patients die annually
as a result of these malignant
tumors

« Approximately 7.4 cases of primary
malignant tumors of the CNS are
diagnosed per 100,000 people per
year

Other Gliomas
15.7%

AA
7.9%
Other

Astrocytomas
16.5%

GBM
50.7%

n=25,539

*Adapted from CBTRUS. Statistical Report. 2005.
OD, oligodendroglioma; AA, anaplastic astrocytoma.

CBTRUS. Statistical Report. 2005.
American Cancer Society. Detailed guide: brain/CNS tumors in adults. 2007.
American Cancer Society. Cancer Facts and Figures 2007. v.1



Human SVZ Astrocytes Do Not
Require EGF or FGF

Astrocytes isolated from SVZ, cortex, and striatum

‘ DAPI

Astrocytes clonally cultured
on a cortical astrocyte
Monolayer (no EGF/FGF)

4

v’ 5 of 64 SVZ astrocyte colonies
contained new neurons

X Cortical and striatal astrocytes: no neurons
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