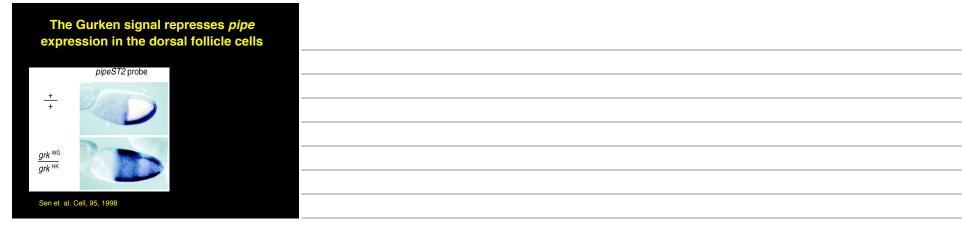
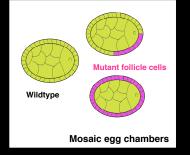
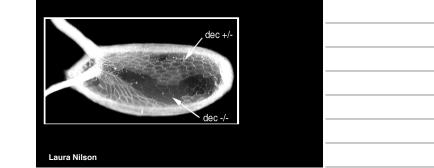

iBiosemiar by Trudi Schupbach

Maternal control of	
embryonic axis formation	
in Drosophila	
Part 3	
Gurken gradient and	
follicle cell response	
Trudi Schupbach	
Princeton University HHMI	
V	



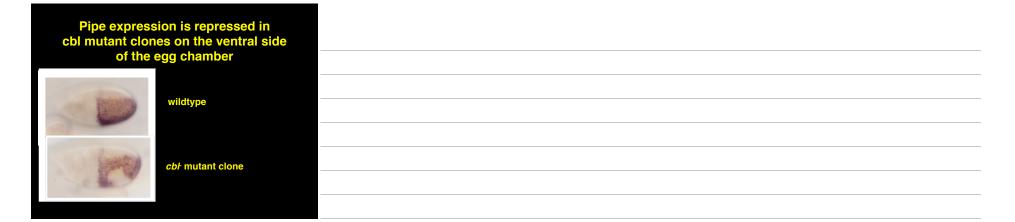


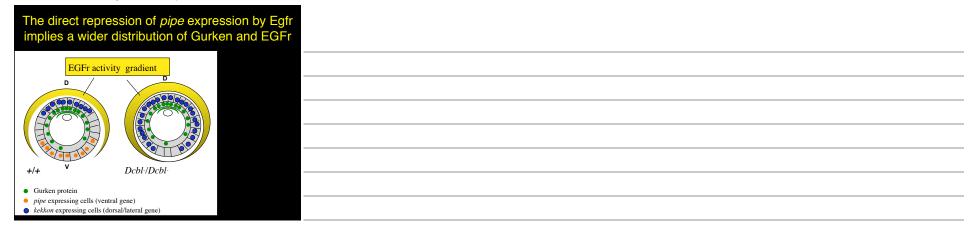

Genetic screen for mutations acting in the follicle cells, downstream of EGFr activation

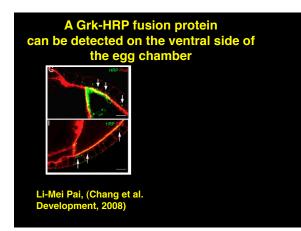

Using mitotic recombination to generate homozygous mutant patches (clones) of cells heterozygous female FRT + \bigcirc FRT + G2 Flipase; X FRT M* FRT m* Mitosis FRT FRT m* FRT O FRT m* Single homozygous cells, form clones

Mosaic egg shell created by mitotic recombination in follicle cells during oogenesis

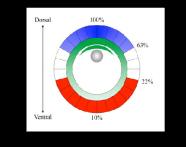








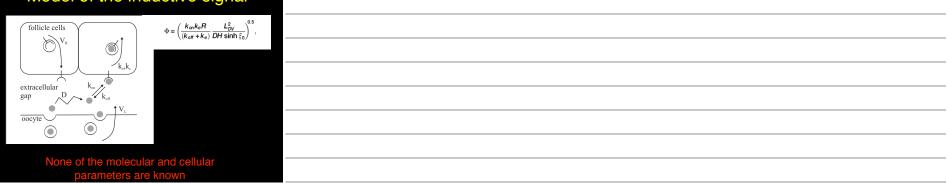
In cbl mutant cells, kekkon is misexpressed on the ventral side of the egg chamber Image: Control of the egg chamber



Based on these results, we already conclude that Gurken is a long-range molecule and thus supporting the proposed mechanism that Gurken signaling directly establishes the dorsal-ventral axis of the egg. Currently, we are trying to quantify further these results and perform measurements to hopefully bracket the parameter values.

Part 3

Quantitative analysis of the Gurken gradient

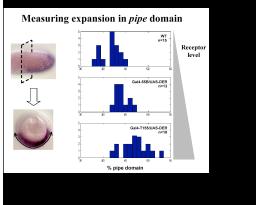


Goentoro, Reeves, Kowal, Martinelli, Schüpbach, Shvartsman, Dev Cell (2006)

iBiosemiar by Trudi Schupbach

Inferring the shape of	Gurken gradient			
	Experiments &			
Model	measurements			
Predictions	Parameter estimation			
Freuctions	Farameter estimation			
Lea Goentoro, Stanislav	Shvartsman			
	onvarionan			

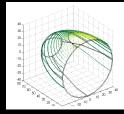
Model of the inductive signal



The analysis shows that,

When Da is low, that is when reaction is slow compared to diffusion, secreted Gurken can travel far from the source of secretion.

When Da is relatively high, and in this case when reaction is comparable to diffusion, most Gurken molecules secreted from dorsal side are captured immediately by nearby receptors.


iBiosemiar by Trudi Schupbach

WT				
	Receptor			
	level			
45 50 56				
Gal4-55B/UAS-DER n=13				
Gal4-T155/UAS-DER n=18				
a dila il				
45 50 56				
% pipe domain				

Conclusion

Gurken is a long-range signal

Based on these results, we already conclude that Gurken is a long-range molecule and thus supporting the proposed mechanism that Gurken signaling directly establishes the dorsal-ventral axis of the egg. Currently, we are trying to quantify further these results and perform measurements to hopefully bracket the parameter values.

Quantitative analysis of the Gurken gradient

*Jennifer *Nicole C *Amanda Scott Fer Translati <i>encore</i> , J	Angela Jaramillo *Jennifer Goodrich *Nicole Clouse *Amanda Norvell	Gurken-Egfr signal *Shira Neuman- Silberberg *Siegfried Roth *Jim Price	
	Scott Ferguson Translational Control, encore, half pint *Cheryl Van Buskirk	Follicle Cell Response 'Yan Yan Natalie Denef Yi Sun	
	Mathematical Modelling *Lea Goentoro	*Li-Mei Pai *Laura Nilson	
Collaborators: S. Shvartsman, Pri E. Gavis, Princetor	inceton U.	Technical help Gail Barcelo	
		* former lab members	